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Boundary Conditions and Cluster Property in
Two-Dimensional Ising Ferromagnets

D. Merlini
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Using the Sherman theorem on paths, the cluster property, and the
second GKS inequality, we obtain some results in favor of the non-
existence of non-translation-invariant equilibrium states for two-
dimensional Ising models with ferromagnetic short-range interactions in the
low-temperature region. With a constraint on the interaction sirength at
the boundary, we prove that for the two-dimensional Ising model, all
boundary conditions yield the unique translation-invariant correlation
functions <ox>z2,+, for | X| even.
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Sherman theorem on paths.

1. INTRODUCTION

It is well established® that in the three-dimensional Ising ferromagnet, in
zero field, there exist non-translation-invariant equilibrium states, i.e., there
exists at least a well-defined sequence of increasing cubes {A;}, i = 1, 2,..., o0,
with an appropriate sequence of boundary conditions {b; . _}, such that,
in the thermodynamic limit and at low enough temperatures, the equi-
librium state so obtained is not translation invariant. This fact is related to
and expresses the property that at low temperature the interface between
the two pure phases is rigid, a result very different from the one obtained in
the two-dimensional case,® where the oscillation of the interface is relatively
large. In connection with this last result and a conjecture,® it is then be-
lieved that non-translation-invariant equilibrium states should not exist in
the two-dimensional case. In other words, for all subset X < A, | X]| even,
of points inside the box A, and any boundary condition b, {ox>, , should
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approach {og)s . as |A] —00; {ox>, . denotes, as usual, the equilibrium
state defined by means of plus boundary conditions, where all spins on the
boundary are fixed in the configuration ¢ = + 1. (Notice that in this work
we are concerned with even correlation functions; if |X| is odd, the con-
nected problem is to show that {oyx>,, should approach «loxds . +
(1 — e)oxda,-,0<a<1,as |[A] > 00.)

A proof of the above conjecture is, to the best of our knowledge, still
lacking and has not been completely ruled out. This paper is no exception;
partial results have been obtained recently by different methods using refined
inequalities.® Here we still reinforce the above conjecture and obtain par-
tial results which apply to a large set of boundary conditions, some of
which are not necessarily covered by the partial results obtained in the
above reference. Moreover, with a constraint on the interaction strength
at the boundary, it is proved here that if | X] is even, all boundary condi-
tions yield the unique translation-invariant correlation function {ogdz2 .,
defined by means of plus boundary conditions. Technically, the results apply
also with minor modifications, to the less interesting, but nevertheless in-
structive case where the model is defined on domains A which are not subsets
of 72, and where the constraint on the boundary interaction strength may
be removed; uniqueness of the even correlation functions for the model in
cylindrical geometry at low temperatures is then obtained.®

The method is not restricted to the two-dimensional case and applies
to v-dimensional ferromagnets with short-range interactions. The results of
the method are nevertheless more suggestive in one and two dimensions,
since the cardinality of the boundary may grow at most as the linear dimen-
sion of the lattice, i.e., |b] < ¢-L, Vb.

The strategy of this work was advanced earlier®® and the motivation
of this paper was an attempt to prove the above conjecture by use of the
duality transformation method, equivalent to low-temperature technique,
and by use of the Sherman theorem on paths, specific to the two-dimensional
Ising model.™"'® We note that the use of such a theorem is not strictly
necessary here; it nevertheless allows us to derive very simply a cluster
property for even correlation functions without employing the more refined
general I'* technique of the algebraic method*¥; in fact, using a suitable
cluster expansion for low-temperature contours,*!® we may recover the
Sherman theorem on paths in defining a mapping of the connected graphs
(appearing in the I'* cluster expansion) into the set of closed contours or
cycles. @

Boundary conditions and the Sherman theorem on paths are recalled
in Section 2, while our partial results are derived and illustrated with some
remarks in Section 3.
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2. BOUNDARY CONDITIONS AND THE SHERMAN THEOREM
ON PATHS

Let A < 72 be a finite square box of |A| sites. Let o, = +1, ie A, be
an Ising spin variable and o, = [ ;.4 05, 4 © A, and let B be any bond on the
lattice (B = two-point nearest neighbor subset for the Ising model). The
analysis will be restricted to even correlation functions {{ox>}, |X| even,
X = (B, By, B3, B,,..., B,), near the center of the lattice. With &% the set
of all boundary conditions on the boundary A (AN JA = @), on the
finite, fixed square box A, let each element b€ % be the set of sites
{Xi0} < 0A where o, = —1; the other points x;, € 0A are fixed in the
configuration o = +1. Let for each bond B < A, up = exp(—2Kzo5),
Ky = BJy, and for each x;,€b, B; = (x;, X;), such that op, = 0,,-0, =
—0o,,; let pp = exp(—2Kpo.). The correlation function {oxp,,,, with
boundary condition b € 4, is given by

(oxI'L; exp(zKBiO'Bi)>A, o (ox 'Ly KB OA, + (1)
I eXp(ZKBiGBi)>A, + {Th BB oA, +

For later use, we recall that, with each X, | X] even, inside A we may
associate a path P = (B, B,,..., B,) (a set of bonds inside A) such that
ox = [1}-1 05, The Sherman theorem on paths,® which we shall use later
to derive a cluster property, holds in particular for a finite square A*, with
open boundary conditions and interaction energy {K%}, (K3 real) with
[th K&] < 1, VB* < A*, which may be different for each bond B*; we
use here the superscript #, since in applying the Sherman theorem we shall
work with high-temperature closed graphs associated with the lattice A*
dual to A, and such that for any pair of dual bonds B, B*, th K. = e~ ?%s.
(Notice that closed graphs on the open square A* coincide with low-tem-
perature contours on A with plus boundary conditions.)

The theorem states that the reduced partition function Z,.({K3}) is
given by the exponential of a sum of trajectories, i.e.,

<C’X>A,b =

~ " Z({KED —1)¥e #m
2y K5 = L. C(i co}sh KE exp [Z (M(C)) gw(th K3 B,}
~ x| 3 wie)| )

In (2), C denotes any cycle, or closed connected path on the lattice A*, by
weight W(C); u(C) is the multiplicity of the cycle C, N, the number of
self-crossings of C, and nz. the number of times a bond B* occurs in C.
Further, >geec npe = I(C) is the length of C. Notice that a change of =
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degrees in the trajectory to construot the path C is not allowed. We now
derive our result.

3. PARTIAL RESULTS

It may be stated as follows: Let A be a square box of area |A| = L?
and b € %, with |b| the cardinality of b (from the symmetry property it is
sufficient to consider b such that |b| < 2L); let /, be the smallest distance
between any point of b and X; K = BJ is the interaction strength VB < A
and {K3,} is the interaction strength at the boundary (boundary fields). We
then have the following result:

Theorem. If
15|

4ZKBi+21,,(ln3—2K)—>—oo as L — o0
i=1

then at low enough temperature {ox>, (K, {Kp}) converges to {ox)z2, ,(K)
as |A| — oo. Therefore all such boundary conditions yield the same trans-
lation-invariant correlation functions {ox>,2 ,(K) defined by means of plus
boundary conditions.

Proof. We recall that, if £ = {oxDas/{ox0n,+, £ € 1, Vb H. We now
express the function pg = cosh 2Ky, — oy, sinh 2Kp, in terms of the {0}
and thus express £ as a ratio of two sums involving expectation values in
the pure phase, i.c.,

¢ = acs aa(= 1) axon, +
ZACB as(— 1)|A|<UA>A,+<°'X>A, +

1+ 2AcB aA(—I)IA|(<UXUA>A,+ - <0X>A,‘+<UA>A,+) ?3)
2o oal— 1)lA1<GX>A, +{oa, +

where by definition o, = a,({Kz}). Applying the second GKS inequality

(o004, + = {ox0n,+0a0a,+, WE Obtain

- {ox0n,+ )] (exp(2 3; Kpox)a, + 4
€21 [E%é (<0x>A, +$0Da, + 1 {exp(—2 2, KB,Ux;)>A, + @)
Thus
e>1- (e ep(t3K) O

where in (4) we used the crude lower and upper bounds

<exp($22KBiaxi)> Z exp(?ZZKBt).
i A, + i
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The cluster property in the pure phase yields upper bounds of the form

Cox00p, +10x0n, +<0a0a, + < €Xplafe ™) x.a-y]
with « and y some positive coefficients*?; the method is general; we derive
here such a bound, applying directly the Sherman theorem on paths, after
a low-high temperature duality transformation‘®; by such a transforma-
tion, plus boundary conditions are mapped into open boundary conditions
and for each pair of dual bonds (B, B¥), K* is such that th K = ¢~ 2%s,
Then

C,, = <0XGA>A, + — <P’§'}"’A'>A',op
“ <0X>A, +<UA>A, + <F’§‘>A‘,op<f"‘A‘>A‘,op

The above expectation values are to be computed in the dual system on A*
(open square), with interaction K., and for any dual path Y*to ¥, Y* =

(Bl*’ B2*,"-’ —Bﬂ.*)’
Pye = exp(—ZZ K;,UBi.) = H 7

Bi*eY*

(K*) (6)

C, appears as a ratio between the product of two partition functions, i.e.,
by definition [X* = (B,*, B.*,..., B,*); A* = (B,*, B.*,..., B%.)],

- ZAa(—K;a, —K;*)ZA‘(_*_K;" +K§:t) (7)
ZA‘(_K;‘, +Kgi‘)ZAt(+K;t, "ngit)

since each 3. changes the interaction from ferromagnetic to antiferromagnetic
in the respective Hamiltonians. Applying the Sherman theorem to the above
ratio, we see that the bulk contribution cancels exactly and only cycles C
passing simultaneously through a subset of A* of the dual path 5* (corre-
sponding to the boundary b) and of X* need to be considered; explicitly,

CAt

Cup = exp{ W(C)Kc] )
CNX*#+ 3 .
CNA*£ D
where
Ko = (_l)lCnX'I-HCnA'[ 4+ 1 - (_l)wnX'l - (_1)ICnA'I
and
(= 1) (= 1Wory
W(C) = ~—=— th K3 s = 2K g)g.
© =Sy [l ksre =Sy L1

|C N X*| and |C N 4*| denote, respectively, the number of bonds of X*
and of A* which occur with its multiplicity in C. Then a crude estimate as
an upper bound is given for any 4* by

CA.=exp[4 > IW(C){] ®

CnXs# g
CNnAs£ g
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As in the Peierls argument, the number of cycles of length / containing a
given bond is smaller than 3!; from the definition of /, we obtain

1
_ 21
Cu < exp[(?a exp —2K)% = 3 exp(—2 min, KB,—)] (10)

with exp(—2 min; Kz) < %; then with (5) and (10), as |A| — oo we have

E>1-— [exp(4zi KBi)](3 exp —2K)%h-r  (r > 0) an

If 4%, Ks, + 2L(In 3 — 2K) - —oo, we obtain £ > 1;since £ < 1, ¢ = 1,
thereby proving the theorem.
Our result is now illustrated in the form of some remarks.

Remark 1. If the boundary fields are such that K = K, V;, we ob-
tain £ = 1 for boundary conditions » such that |b|//, < I — (In 3)/2K, in
the low-temperature region such that e~ 2% < 1/3%, « > 1; it is easily found
that there exists b for which ¢ = 1 from (11) with the two properties: (a) the
inequality o, + oz, > 0 (or <0) for all pairs of symmetric boundary
points (with respect to a vertical axis in the middle of the box A) is not
satisfied. (b) |b| may satisfy the inequality |b|/(4L — |b]) > 3/5; and for
such b, the partial result derived in Ref. 4 (and the reference therein) does
not apply.

Remark 2. Let us impose a constraint on the interaction energy at
the boundary, or strength of the boundary fields, i.e., let first Ky, = K’, Vi
then our result says that a// boundary conditions b give £ = 1, provided
that In 3 < 2K’ < (2K — In 3)/4. Moreover,
lim <ox>ao(K, K') = {og)z2, +(K, K)

1A[— 0

since from the second GKS inequality

|11[i2100 Cox)n,olK, 0) < IE{I}W (opon, +(K, K') < “5{1}00 {oxoa, +(K, K)
and {ox)z2.p(J) = {oxDz2 +(J), since there are only two translation-invari-
ant states in the Ising ferromagnet.®72% Thus the correlation functions are
insensitive to a change of the interaction strength at the boundary. It is
believed that the constraint on the strength of the boundary fields on J’
appears more for technical reasons and may be removed, at least in some
cases, by a suitable choice of the domain A; in fact, we note the following.

Remark 3. Our results also apply to the Ising model defined on a set A
not necessarily a subset of Z2; in particular, a refinement of the method
allows us to remove the above constraint, yielding the uniqueness of the
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even correlation functions for the two-dimensional Ising model in cylindrical
geometry at low temperature.®

Note: After this work was completed the author learned that a general
proof for the non-existence of non-translation-invariant states in the two-
dimensional Ising model was obtained by M. Aizenman and Y. Higuchi.
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