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Boundary Conditions and Cluster Property in 
Two-Dimensional Ising Ferromagnets 
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Using the Sherman theorem on paths, the cluster property, and the 
second GKS inequality, we obtain some results in favor of the non- 
existence of non-translation-invariant equilibrium states for two- 
dimensional Ising models with ferromagnetic short-range interactions in the 
low-temperature region. With a constraint on the interaction strength at 
the boundary, we prove that for the two-dimensional Ising model, all 
boundary conditions yield the unique translation-invariant correlation 
functions (ax)~2 +, for IX] even. 

KEY WORDS: Ising ferromagnet; boundary conditions; cluster property; 
Sherman theorem on paths. 

1. I N T R O D U C T I O N  

It  is well established (1) that  in the three-dimensional Ising ferromagnet,  in 
zero field, there exist non-translat ion-invariant  equilibrium states, i.e., there 
exists at least a well-defined sequence o f  increasing cubes {As}, i = 1, 2,..., ~ ,  
with an appropria te  sequence o f  boundary  conditions {b~, + _}, such that, 
in the the rmodynamic  limit and at low enough temperatures,  the equi- 
l ibrium state so obtained is not  translation invariant. This fact is related to 
and expresses the proper ty  that  at  low temperature the interface between 
the two pure phases is rigid, a result very different f rom the one obtained in 
the two-dimensional  case, (2) where the oscillation o f  the interface is relatively 
large. In  connect ion with this last result and a conjecture, (3) it is then be- 
lieved that  non-translat ion-invariant  equilibrium states should not  exist in 
the two-dimensional  case. In  other  words,  for  all subset X = A, IX[ even, 
o f  points inside the box A, and any bounda ry  condit ion b, (aX)A.b should 
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approach @x)A, + as I A] --~ oo ; (~x)A, + denotes, as usual, the equilibrium 
state defined by means of plus boundary conditions, where all spins on the 
boundary are fixed in the configuration g = + 1. (Notice that in this work 
we are concerned with even correlation functions; if IX] is odd, the con- 
nected problem is to show that (aX)A,b should approach a(ax)A,§ + 
(1 - ~ ) ( ~ x ) ~ , - ,  0 < a < l ,  as [AI --,  oo.) 

A proof  of the above conjecture is, to the best of our knowledge, still 
lacking and has not been completely ruled out. This paper is no exception; 
partial results have been obtained recently by different methods using refined 
inequalities. (~ Here we still reinforce the above conjecture and obtain par- 
tial results which apply to a large set of boundary conditions, some of 
which are not necessarily covered by the partial results obtained in the 
above reference. Moreover, with a constraint on the interaction strength 
at the boundary, it is proved here that if IX[ is even, all boundary condi- 
tions yield the unique translation-invariant correlation function @x)~2, +, 
defined by means of plus boundary conditions. Technically, the results apply 
also with minor modifications, to the less interesting, but nevertheless in- 
structive case where the model is defined on domains A which are not subsets 
of ;~2, and where the constraint on the boundary interaction strength may 
be removed; uniqueness of the even correlation functions for the model in 
cylindrical geometry at low temperatures is then obtained. (5~ 

The method is not restricted to the two-dimensional case and applies 
to v-dimensional ferromagnets with short-range interactions. The results of 
the method are nevertheless more suggestive in one and two dimensions, 
since the cardinality of the boundary may grow at most as the linear dimen- 
sion of  the lattice, i.e., Ibl -< c.L, Vb. 

The strategy of this work was advanced earlier (6) and the motivation 
of this paper was an attempt to prove the above conjecture by use of the 
duality transformation method, equivalent to low-temperature technique, 
and by use of the Sherman theorem on paths, specific to the two-dimensional 
Ising model. (7-1~ We note that the use of  such a theorem is not strictly 
necessary here; it nevertheless allows us to derive very simply a cluster 
property for even correlation functions without employing the more refined 
general F* technique of the algebraic method(l~; in fact, using a suitable 
cluster expansion for low-temperature contours, ~12'~a~ we may recover the 
Sherman theorem on paths in defining a mapping of the connected graphs 
(appearing in the F* cluster expansion) into the set of closed contours or 
cycles. (~4~ 

Boundary conditions and the Sherman theorem on paths are recalled 
in Section 2, while our partial results are derived and illustrated with some 
remarks in Section 3. 
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2. B O U N D A R Y  C O N D I T I O N S  A N D  T H E  S H E R M A N  T H E O R E M  
ON P A T H S  

Let A c 2~ 2 be a finite square box of ]A[ sites. Let ~ = _+ 1, i e  A, be 
an Ising spin variable and aA = I ~ A  ~r~, A c A, and let B be any bond on the 
lattice (B = two-point nearest neighbor subset for the Ising model). The 
analysis will be restricted to even correlation functions {(ax)}, IX] even, 
J( = (B1, B2, B3, B4,..., B,), near the center of  the lattice. With ~ '  the set 
of  all boundary conditions on the boundary ~A (A c~ aA = ~) ,  on the 
finite, fixed square box A, let each element b ~ N be the set of  sites 
{x~o} c ~A where a~ o = - 1 ;  the other points X~o ~ aA are fixed in the 
configuration ~ = +1.  Let for each bond B c A, /x B = exp(--2KBa~), 
KB = flJB, and for each x~o ~ b, B~ = (xi, X~o), such that ~B~ = a~ -~ , o  = 
- a x , ;  let txB~ = exp(--2KB,a~,). The correlation function <CrX)A,b, with 
boundary condition b e ~ ,  is given by 

<(rx I~i exp(2KB~rs~))A, + @x [-~i /ZB,}A, + 
<aX)A'b = <I~, exp(2KB,aB,)>a, + = <r-i, t~B,>~, + (1) 

For later use, we recall that, with each X, l J(] even, inside A we may 
associate a path P = (B1, B~ .... ,/~,) (a set of  bonds inside A) such that 
ax = F[~= ~ az,. The Sherman theorem on paths, <~ which we shall use later 
to derive a cluster property, holds in particular for a finite square A*, with 
open boundary conditions and interaction energy {K*.}, (K** real) with 
lth K*,[ < 1, VB* c A*, which may be different for each bond B*; we 
use here the superscr ip t . ,  since in applying the Sherman theorem we shall 
work with high-temperature closed graphs associated with the lattice A* 
dual to A, (~) and such that for any pair of  dual bonds B, B*, th K*. = e -  ~ .  
(Notice that closed graphs on the open square A* coincide with low-tem- 
perature contours on A with plus boundary conditions.) 

The theorem states that the reduced partition function 2A,({K*.}) is 
given by the exponential of  a sum of trajectories, i.e., 

= exp ~(C) B.I~c (th K*')"~" 
z..({K*.}) 

2A.({K*.}) = Z*" I-i . c . .  cosh K*. 

In (2), C denotes any cycle, or closed connected path on the lattice A*, by 
weight W(C);  ~(C) is the multiplicity of  the cycle C, Nc the number of  
self-crossings of  C, and nB. the number of  times a bond B* occurs in C. 
Further, ~B*~e nB. = l(C) is the length of  C. Notice that a change of ~r 
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degrees in the trajectory to construot the path C is not allowed. We now 
derive our result. 

3. PARTIAL  RESULTS 

It may be stated as follows: Let A be a square box of area [A[ = L 2 
and b e ~ ,  with [b I the cardinality of b (from the symmetry property it is 
sufficient to consider b such that [b[ ~< 2L); let lb be the smallest distance 
between any point of b and X; K = f iJ  is the interaction strength VB c A 
and {KB,} is the interaction strength at the boundary (boundary fields). We 
then have the following result: 

T h e o r e m .  If  
Ibl 

4 >j KB, + 2lb(ln 3 - 2 K ) ~  - o o  as L ~ oo 
i = l  

then at low enough temperature (~x)A,b(K, {KB~}) converges to @x)~2, +(K) 
as IAI ~ oo. Therefore all such boundary conditions yield the same trans- 
lation-invariant correlation functions (~rx)e2 ' +(K) defined by means of plus 
boundary conditions. 

P r o o L  We recall that, if s ~ = (ax)A,J@x)A, +, ~ ~< 1, Vb e ~ .  We now 
express the function /~, = cosh 2K, ,  - ax= sinh 2KB, in terms of the {~x,} 
and thus express ~: as a ratio of two sums involving expectation values in 
the pure phase, i.e., 

EA=, a n ( -  I)IA'@XaA)A, + 

= I + E~" ~(-I)'~'(<~A>~'+ - <~x>^,,+<~>~,+) (3) 
EA=b ~a(-- 1)La'<~x>A, + <~a>A, + 

where by definition -a = -A({KB~}). Applying the second GKS inequality 
<axcrA)a, + >/ <ax)^, + <aa)a, +, we obtain 

[ [ (axaA)a+ ' ]  <exp(2E, Kn, ax))a.+ 
- max - - "  . . . . . .  + ) ]  <exp(-  2 Y~ KB,cr,~,)>A, + # i> 1 [,j~abak(~x)A,+<aA>^ ' - 1 (4) 

Thus 

~>~ 1 -  (max (~rx'rA>a'+ - - 1 )  e x p ( 4 ~ K B , )  (5) 
\ ~ ~ b <,~>A, + <'~A>~, + 

where in (4) we used the crude lower and upper bounds 

( e x p  ( ~  2 ~ Kn,ax , ) ) ,  + <> exp(-T- 2 ~ KB,). 
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The cluster property in the pure phase yields upper bounds of the form 

(OX~A)A, +/(aX)A, + (aa)A, + <~ exp[a(e-2K)ax,a-~] 

with a and ?, some positive coefficients(:2); the method is general; we derive 
here such a bound, applying directly the Sherman theorem on paths, after 
a low-high temperature duality transformation(6); by such a transforma- 
tion, plus boundary conditions are mapped into open boundary conditions 
and for each pair of dual bonds (B, B*), K* is such that th K*. = e-uKB. 
Then 

CA. = <~X~A>A" + (K) = . <t~*'p'A'>A''~ (K*) (6) 
<~x>A, + <~>~,  + <t~x.>A.,o~ <t~.>~.,o~ 

The above expectation values are to be computed in the dual system on A* 
(open square), with interaction K*,, and for any dual path Y* to Y, Y* = 
(B:*,  a~* .... , B.*) ,  

�9 B~.*GY* 

CA appears as a ratio between the product of  two partition functions, i.e., 
by definition [X* = (B:*, B2*,...,/~*); A* = (B:*, B2*,..., BS.i)], 

2A.(--K*,.,-K*,,)ZA.(+K;**, +g*, .)  
Ca. ZA*(-- KJ,., * ~ * - + K~e)ZA. (+K~,., K'e)  (7) 

since each/~** changes the interaction from ferromagnetic to antiferromagnetic 
in the respective Hamiltonians. Applying the Sherman theorem to the above 
ratio, we see that the bulk contribution cancels exactly and only cycles C 
passing simultaneously through a subset of A* of the dual path b* (corre- 
sponding to the boundary b) and of X* need to be considered; explicitly, 

C ~ . =  exp[c~x~ ~ W(C)Kc] (8) 

where 

and 

Kc = ( -  1) tcnx'j +Jc~A.I + 1 -- (-- 1) t~ -- (-- 1) IcnA'l 

w ( c )  = ( -  DNc 1--1 ( -  1)~'c ~-(~)) ~.~ (th K*0"B. -- 1-I (e-2XB)"B" 
~(C) ,.~o 

]C n X*] and [C n A*[ denote, respectively, the number of  bonds of X* 
and of  A* which occur with its multiplicity in C. Then a crude estimate as 
a n  upper bound is given for any A* by 

CA. = exp[4 c~x~ IW(C)I ] (9) 
C n A *  q= f~ 
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As in the Peierls argument, the number of cycles of length l containing a 
given bond is smaller than 3~; from the definition of lb we obtain 

C~. ~< exp (3 exp -2K)2lb 1 -- 3 exp(--2 mink KB~) 

with e x p ( - 2  mink KB,) < �89 then with (5) and (10), as IAI ~ co we have 

 r>0, 

I f  4 ~ KB, + 2/b(ln 3 -- 2 K ) ~  - c o ,  we obtain {: 1> 1; since ~: ~< 1, ~ = 1, 
thereby proving the theorem. 

Our result is now illustrated in the form of some remarks. 

Remark  1. I f  the boundary fields are such that Kz, = K, V~, we ob- 
tain ~ = 1 for boundary conditions b such that lbl/tb < I - (In 3)/2K, in 
the low-temperature region such that e -2K <~ 1/3% c~ > 1; it is easily found 
that there exists b for which ~ = 1 from (11) with the two properties: (a) the 
inequality C%o + ~ o  /> 0 (or ~<0) for all pairs of symmetric boundary 
points (with respect to a vertical axis in the middle of the box A) is not 
satisfied. (b) Ibl may satisfy the inequality IbI/(4L - ]b]) > 3/5; and for 
such b, the partial result derived in Ref. 4 (and the reference therein) does 
not apply. 

Remark  2. Let us impose a constraint on the interaction energy at 
the boundary, or strength of the boundary fields, i.e., let first Ks, = K' ,  Vi; 
then our result says that all boundary conditions b give ~: = 1, provided 
that In 3 < 2K' < ( 2 K -  in 3)/4. Moreover, 

lim (ax>A,b(K, K') = <ax>~2 ' +(K, K) 
I A i ~  cr 

since from the second GKS inequality 

lira <~x>A,o~(K, 0) ~< lira <,rx>A ' +(K, K') ~< lira <~x>A. +(K, K) 
I A I ~  oo I A I ~  I A l ~  

and (~x>eLop(J) = (crx>~L+(J), since there are only two translation-invari- 
ant states in the Ising ferromagnet. (~7-2~ Thus the correlation functions are 
insensitive to a change of the interaction strength at the boundary. It is 
believed that the constraint on the strength of the boundary fields on J '  
appears more for technical reasons and may be removed, at least in some 
cases, by a suitable choice of the domain A; in fact, we note the following. 

Remark  3. Our results also apply to the Ising model defined on a set A 
not necessarily a subset of 7/2; in particular, a refinement of the method 
allows us to remove the above constraint, yielding the uniqueness of the 
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even cor re la t ion  funct ions  for the two-d imens iona l  Is ing model  in cyl indr ical  

geomet ry  at  low tempera ture .  (5~ 

N o t e :  After  this work  was comple ted  the au thor  learned  tha t  a general  
p r o o f  for  the  non-exis tence o f  non- t rans la t ion- invar i an t  states in the two- 
d imens iona l  Is ing mode l  was ob ta ined  by M. A izenman  and  Y. Higuchi .  
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